[1] European Commission. (2013). Directorate-General for Environment. Building a green infrastructure for Europe. Publications Office of the European Union. https://data.europa.eu/doi/10.2779/54125
[2] European Commission. (2021). Evaluating the impact of nature-based solutions: A summary for policy makers. Publications Office of the European Union. https://data.europa.eu/doi/10.2777/521937
[3] Lawrence, J., Blackett, P., & Cradock-Henry, N. A. (2020). Cascading climate change impacts and implications. Climate Risk Management, 29, 100234. https://doi.org/10.1016/j.crm.2020.100234
[4] CASCADE project. Consortium led by Southwest Finland Emergency Services. Retrieved January 25, 2022, from https://www.cascade-bsr.eu/
[5] European Environment Agency. (2022). Economic losses from weather and climate-related extremes in Europe reached around half a trillion euros over past 40 years [News]. https://www.eea.europa.eu/highlights/economic-losses-from-weather-and
[6] Carter, J. G., Cavan, G., Connelly, A., Guy, S., Handley, J., & Kazmierczak, A. (2015). Climate change and the city: Building capacity for urban adaptation. Progress in Planning, 95, 1–66. https://doi.org/10.1016/j.progress.2013.08.001
[7] Deppisch, S., Juhola, S., Janßen, H., & Richter, M. (2015). Socio-economic Impacts—Urban Complexes. In The BACC II Author Team (Ed.), Second Assessment of Climate Change for the Baltic Sea Basin (pp. 411–423). Springer International Publishing. https://doi.org/10.1007/978-3-319-16006-1_22
[8] Fekete, A. (2019). Critical Infrastructure and Flood Resilience ? Cascading Effects Beyond Water. Wiley Interdisciplinary Reviews: Water. https://doi.org/10.1002/wat2.1370
[9] Keskinen, M., Sojamo, S., & Varis, O. (2019). Enhancing Security, Sustainability and Resilience in Energy, Food and Water. Sustainability, 11(24), 7244. https://doi.org/10.3390/su11247244
[10] Burke, M., Hsiang, S. M., & Miguel, E. (2015). Global non-linear effect of temperature on economic production. Nature, 527(7577), 235–239. https://doi.org/10.1038/nature15725
[11] Tuholske, C., Caylor, K., & Funk, C. (2021). Global urban population exposure to extreme heat | PNAS. https://www.pnas.org/doi/10.1073/pnas.2024792118
[12] IPCC (2022). Summary for Policymakers. In: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R Shukla, J.Skea, R.Slade, A.Al Khourdajie, R.van Diemen, D. McCollum, M.Pathak, S.Some, P.Vyas, R.Fradera, M.Belkacemi, A.Hasija, G.Lisboa, S.Luz, J.Malley, (eds.)]. Cambridge University Press, Cmabridge, UK and New York, NY, USA. doi: 10.1017/9781009157926.001
[13] IPCC (2007). Intergovernmental Panel on Climate Change. Retrieved June 5, 2022, from https://archive.ipcc.ch/ipccreports/tar/wg2/index.php?idp=643
[14] Bush, J., & Doyon, A. (2019). Building urban resilience with nature-based solutions: How can urban planning contribute? Cities, 95, 102483. https://doi.org/10.1016/j.cities.2019.102483
[15] Dickson, E., Baker, J. L., Hoornweg, D., & Tiwari, A. (2012). Urban Risk Assessments: Understanding Disaster and Climate Risk in Cities. World Bank. https://doi.org/10.1596/978-0-8213-8962-1
[16] Vacht, P. (n.d.). Resilience – Augmented Urbans. Retrieved February 22, 2022, from https://augmentedurbans.metropolia.fi/resilience/
[17] Zuniga-Teran, A. A., Staddon, C., de Vito, L., Gerlak, A. K., Ward, S., Schoeman, Y., Hart, A., & Booth, G. (2020). Challenges of mainstreaming green infrastructure in built environment professions. Journal of Environmental Planning and Management, 63(4), 710–732. https://doi.org/10.1080/09640568.2019.1605890
[18] UNDRR. (2012). How to make cities more resilient: A handbook for local government leaders (2012). https://www.undrr.org/publication/how-make-cities-more-resilient-handbook-local-government-leaders-2012
[19] UNDRR. (2015). Sendai Framework for Disaster Risk Reduction 2015-2030. https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030
[20] Rayno, V. (2014). – A first guide for designing water-wise gardens in the piedmont region of North Carolina. 60.
[21] Toxopeus, H., Kotsila, P., Conde, M., Katona, A., van der Jagt, A. P. N., & Polzin, F. (2020). How ‘just’ is hybrid governance of urban nature-based solutions? Cities, 105, 102839. https://doi.org/10.1016/j.cities.2020.102839
[22] Cousins, J. J. (2021). Justice in nature-based solutions: Research and pathways. Ecological Economics, 180, 106874. https://doi.org/10.1016/j.ecolecon.2020.106874
[23] Barquet, K., Leander, E., Green, J., Tuhkanen, H., Omondi Odongo, V., Boyland, M., Fiertz, E. K., Escobar, M., Trujillo, M., & Osano, P. (2021). Spotlight on social equity, finance and scale: Promises and pitfalls of nature-based solutions. Stockholm Environment Institute. https://doi.org/10.51414/sei2021.011
[24] Wolch, J. R., Byrne, J., & Newell, J. P. (2014). Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough.’ Landscape and Urban Planning, 125, 234–244. https://doi.org/10.1016/j.landurbplan.2014.01.017
[25] Boyland, M., Tuhkanen, H., Green, J., & Barquet, K. (2022). Principles for just and equitable nature-based solutions. https://www.sei.org/publications/principles-for-just-nature-based-solutions/
[26] Clever Cities. (2018). Barriers and success factors for effectively co-creating naturebased solutions for urban regeneration—Deliverable 1.1.1. https://clevercities.eu/resources/deliverables-and-reports/
[27] Xie, L., Bulkeley, H., van der Jagt, A., Toxopeus, H., Tozer, L., Pearl-Martinez, R., Dorst, H., & Runhaar, H. (2020). Pathways for Systemic Integration of Nature-based Solutions.
[28] Toxopeus, H., & Polzin, F. (2021). Reviewing financing barriers and strategies for urban nature-based solutions—ScienceDirect. https://www.sciencedirect.com/science/article/pii/S0301479721004333
[29] Kabisch, N., Frantzeskaki, N., Pauleit, S., Naumann, S., Davis, M., Artmann, M., Haase, D., Knapp, S., Korn, H., Stadler, J., Zaunberger, K., & Bonn, A. (2016). Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecology and Society, 21(2). https://www.jstor.org/stable/26270403
[30] Nesshöver, C., Assmuth, T., Irvine, K. N., Rusch, G. M., Waylen, K. A., Delbaere, B., Haase, D., Jones-Walters, L., Keune, H., Kovacs, E., Krauze, K., Külvik, M., Rey, F., van Dijk, J., Vistad, O. I., Wilkinson, M. E., & Wittmer, H. (2017). The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Science of The Total Environment, 579, 1215–1227. https://doi.org/10.1016/j.scitotenv.2016.11.106
[31] Klein, J., & Tuhkanen, H. (2022, March 11). Participation in climate change adaptation – Is it happening and what is needed? University of Helsinki. https://www.helsinki.fi/en/researchgroups/urban-environmental-policy/news/participation-in-climate-change-adaptation-is-it-happening-and-what-is-needed
[32] Cullen, A. E., Coryn, C. L. S., & Rugh, J. (2011). The Politics and Consequences of Including Stakeholders in International Development Evaluation. shorturl.at/aAMZ5
[33] Djenontin, I. N. S., & Meadow, A. M. (2018). The art of co-production of knowledge in environmental sciences and management: Lessons from international practice. Environmental Management, 61(6), 885–903. https://doi.org/10.1007/s00267-018-1028-3
[34] Bozovic, R., Maksimovic, Č., Mijic, A., Smith, K. M., Suter, I., & Van Reeuwijk, M. (2017). Blue Green Solutions. A Systems Approach to Sustainable, Resilient and Cost-Efficient Urban Development. https://doi.org/10.13140/RG.2.2.30628.07046
[35] Raymond, C. M., Frantzeskaki, N., Kabisch, N., Berry, P., Breil, M., Nita, M. R., Geneletti, D., & Calfapietra, C. (2017). A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environmental Science & Policy, 77, 15–24. https://doi.org/10.1016/j.envsci.2017.07.008
[36] Voorberg, W. H., Bekkers, V. J. J. M., & Tummers, L. G. (2015). A Systematic Review of Co-Creation and Co-Production: Embarking on the social innovation journey. Public Management Review, 17(9), 1333–1357. https://doi.org/10.1080/14719037.2014.930505
[37] DeLosRíos-White, M. I., Roebeling, P., Valente, S., & Vaittinen, I. (2020). Mapping the Life Cycle Co-Creation Process of Nature-Based Solutions for Urban Climate Change Adaptation. Resources, 9(4), 39. https://doi.org/10.3390/resources9040039
[38] Barquet, K., Segnestam, L., & Dickin, S. (2022). MapStakes: A tool for mapping, involving and monitoring stakeholders in co-creation processes. https://www.sei.org/publications/mapstakes-tool-mapping-stakeholders/
[39] Rusanen, M. (2018). Towards integrated and partnership-based planning of brownfield areas. https://www.balticurbanlab.eu/materials/towards-integrated-and-partnership-based-planning-brownfield-areas
[40] Mascarenhas, A., Nunes, L., & Ramos, T. (2015). Selection of sustainability indicators for planning: Combining stakeholders’ participation and data reduction techniques. Journal of Cleaner Production, 92. https://doi.org/10.1016/j.jclepro.2015.01.005
[41] Few, R., Brown, K., & Tompkins, E. L. (2007). Public participation and climate change adaptation: Avoiding the illusion of inclusion. Climate Policy, 7(1), 46–59. https://doi.org/10.1080/14693062.2007.9685637
[42] Spash, C. L. (2001). Broadening Democracy in Environmental Policy Processes. Environment and Planning C: Government and Policy, 19(4), 475–481. https://doi.org/10.1068/c1904ed